Learning Framework for Non-stationary and Imbalanced Data Stream

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Framework for Non-stationary and Imbalanced Data Stream

Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data ...

متن کامل

Recursive least square perceptron model for non-stationary and imbalanced data stream classification

Classifying non-stationary and imbalanced data streams encompasses two important challenges, namely concept drift and class imbalance. ‘‘Concept drift’’ (or nonstationarity) is changes in the underlying function being learnt, and class imbalance is vast difference between the numbers of instances in different classes of data. Class imbalance is an obstacle for the efficiency of most classifiers...

متن کامل

Learning from Non-Stationary Stream Data in Multiobjective Evolutionary Algorithm

Evolutionary algorithms (EAs) have been well acknowledged as a promising paradigm for solving optimisation problems with multiple conflicting objectives in the sense that they are able to locate a set of diverse approximations of Pareto optimal solutions in a single run. EAs drive the search for approximated solutions through maintaining a diverse population of solutions and by recombining prom...

متن کامل

Concept Drift Detection for Imbalanced Stream Data

Common statistical prediction models often require and assume stationarity in the data. However, in many practical applications, changes in the relationship of the response and predictor variables are regularly observed over time, resulting in the deterioration of the predictive performance of these models. This paper presents Linear Four Rates (LFR), a framework for detecting these concept dri...

متن کامل

Towards Burst Detection for Non-Stationary Stream Data

Detecting bursts in data streams is an important and challenging task, especially in stock market, traffic control or sensor network streams. Burst detection means the identification of non regular behavior within data streams. A specifically crucial challenge on burst detection is to identify bursts in the case of non-stationary data. One approach is to apply thresholds to discover such bursts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Engineering and Technology

سال: 2016

ISSN: 2319-8613,0975-4024

DOI: 10.21817/ijet/2016/v8i5/160805412