Learning Framework for Non-stationary and Imbalanced Data Stream
نویسندگان
چکیده
منابع مشابه
Learning Framework for Non-stationary and Imbalanced Data Stream
Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data ...
متن کاملRecursive least square perceptron model for non-stationary and imbalanced data stream classification
Classifying non-stationary and imbalanced data streams encompasses two important challenges, namely concept drift and class imbalance. ‘‘Concept drift’’ (or nonstationarity) is changes in the underlying function being learnt, and class imbalance is vast difference between the numbers of instances in different classes of data. Class imbalance is an obstacle for the efficiency of most classifiers...
متن کاملLearning from Non-Stationary Stream Data in Multiobjective Evolutionary Algorithm
Evolutionary algorithms (EAs) have been well acknowledged as a promising paradigm for solving optimisation problems with multiple conflicting objectives in the sense that they are able to locate a set of diverse approximations of Pareto optimal solutions in a single run. EAs drive the search for approximated solutions through maintaining a diverse population of solutions and by recombining prom...
متن کاملConcept Drift Detection for Imbalanced Stream Data
Common statistical prediction models often require and assume stationarity in the data. However, in many practical applications, changes in the relationship of the response and predictor variables are regularly observed over time, resulting in the deterioration of the predictive performance of these models. This paper presents Linear Four Rates (LFR), a framework for detecting these concept dri...
متن کاملTowards Burst Detection for Non-Stationary Stream Data
Detecting bursts in data streams is an important and challenging task, especially in stock market, traffic control or sensor network streams. Burst detection means the identification of non regular behavior within data streams. A specifically crucial challenge on burst detection is to identify bursts in the case of non-stationary data. One approach is to apply thresholds to discover such bursts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering and Technology
سال: 2016
ISSN: 2319-8613,0975-4024
DOI: 10.21817/ijet/2016/v8i5/160805412